ЭЛЕКТРОННО-ЗОНДОВОЕ ИССЛЕДОВАНИЕ АМАЗОНИТОВ ПРИБАЙКАЛЬЯ И КОЛЬСКОГО ПОЛУОСТРОВА

Белозерова О.Ю., Макагон В.М.

Институт геохимии им. А.П.Виноградова СО РАН, г. Иркутск, e-mail: obel@jgc.irk.ru

Решение минералогической задачи по изучению характера распределения элементов в амазонитах, исследованию микроструктуры матрицы и выделившихся из неё фаз и включений, а также получение аналитических данных по определению их состава невозможно без локальных методов исследования вещества. Перспективным с этой точки зрения является рентгеноспектральный электронно-зондовый микроанализ (PCMA).

В данной работе представлены результаты исследования амазонит-пертитов из докембрийских пегматитов Кольского полуострова и палеозойских пегматитов Прибайкалья методом РСМА. Эти пегматиты относятся к редкометалльно-редкоземельной формации низких начальных давлений. Первые из них составляют фтор-тантал-иттриевый эволюционный ряд, а вторые – ниобий-редкоземельный. Изучены образцы амазонита из пегматитовой жилы 19 горы Плоской (Кейвы, Кольский полуостров) и пегматитовых жил Прибайкалья (рудник Слюдянка, копь Кабера и Приольхонье, жилы Улан-Нура и Нарин-Кунты), описанных в работе [Шмакин и др., 2007]. Цель исследования – установить особенности состава амазонита и распределения редких элементов в его образцах из редкометалльно-редкоземельных пегматитов различных регионов России.

На рентгеноспектральном микроанализаторе Superprobe JXA-8200 (JEOL Ltd, Япония) с помощью энергодисперсионного и волновых спектрометров разработана методика РСМА амазонитов на основные (Na, Al, Si, K) и примесные (Rb, Cs, Pb) элементы. Оптимальные условия возбуждения и регистрации аналитического сигнала подобраны с учётом зависимостей интенсивности (для основных) и пределов обнаружения (для примесных) определяемых элементов от ускоряющего напряжения, тока зонда и времени измерения.

Образцы для исследования приготовлены в виде запрессовок в эпоксидной смоле и отполированы послойно с помощью абразивных материалов до достижения удовлетворительной поверхности, требуемой для анализа [Павлова и др., 2000]. Для обеспечения электропроводности исследуемых объектов на их поверхность наносили пленку углерода толщиной 20-30 нм [Рид, 2008] методом напыления в вакууме.

В режиме растрового электронного микроскопа во вторичных, обратно рассеянных электронах и в рентгеновских характеристических лучах изучено распределение элементов по поверхности исследуемых объектов. Оценены размеры и формы выделения минеральных фаз по основной матрице образцов, однородность их распределения.

Фазовый состав матрицы и минеральных фаз предварительно был изучен с помощью энергодисперсионного спектрометра. Спектры рассчитаны и обработаны по программе полуколичественного анализа Programme of Semiquantitative Analysis программного обеспечения ЭДС микроанализатора Superprobe JXA-8200.

Количественные определения химического состава проведены сканированием площадей поверхности зерен по взаимно перпендикулярным линейным горизонтальным и вертикальным профилям на волновых спектрометрах при ускоряющем напряжении 20 кВ, токе зонда 20 нА, экспозиции съемки 10 с для (Na, Al, Si, K) и 120 с для (Rb, Cs, Pb). Диаметр зонда варьировали от 1 до 10 мкм, учитывая размер исследуемых объектов. Длина каждого профиля в среднем составляла от 1000 до 2000 мкм в зависимости от размера самого зерна. Шаг сканирования 10-50 мкм. Размер включений оценивали в режиме растрового электронного микроскопа с погрешностью менее 10 % относительных.

Расчет поправочных факторов на матричные эффекты и содержаний определяемых элементов выполнен ZAF-методом по программе количественного анализа программного обеспечения микроанализатора Superprobe JXA-8200. Данные приведены в таблице 1.

Таблица 1.

Образец амазо- нита		Определяемые элементы в оксидной форме									Пририонались
		Na ₂ O	K ₂ O	Al ₂ O ₃	SiO ₂	FeO	Rb ₂ O	Cs ₂ O	PbO	Σ	примечание
Кольский полуостров	1	0.51	15.18	18.44	64,28	Н.О.	0.36	< 0.1	2.02	100.85	Матрица
		0.45	16.00	18.09	65.18	0.17	0.29	< 0.1	0.60	100.82	Матрица
		0.30	15.18	18.53	63.84	Н.О.	0.27	< 0.1	3.16	101,34	Светлая фаза
		0.40	15.51	18.08	63.60	Н.О.	0.10	< 0.1	2.89	100.63	Включение
		0.26	15.15	18.26	63.01	Н.О.	0.21	< 0.1	2.84	99.78	Светлая фаза
		0.37	15.20	18.40	62.93	Н.О.	< 0.1	< 0.1	2.77	99.82	Светлая фаза
		0.11	8.45	20.06	48.85	9.09	0.63	0.13	7.40	94.71	Включение
	2	0.55	15.71	18.36	63.80	< 0.1	< 0.1	< 0.1	0.73	99.36	Матрица
		0.45	15.81	18.19	64.19	< 0.1	Н.О.	< 0.1	0.56	99.26	Матрица
		6.42	0.15	20.18	70.37	< 0.1	Н.О.	< 0.1	0.20	97.32	Альбит
		0.42	15.78	18.47	63.19	Н.О.	0.14	0.13	0.77	98.91	Включение
		0.39	10.77	17.65	54.31	<0.1	0.15	0.18	9.24	92.72	Включение
		2.14	9.44	19.48	64.91	1.42	<0.1	3.80	0.99	102.27	Включение
		0.30	13.48	19.28	61.76	0.11	0.22	0.16	4.43	99.73	Включение
		0.27	10.81	19.98	55.68	<0.1	<0.1	<0.1	16.56	103.38	Включение
		0.24	14.48	16.28	60.46	9.91	<0.1	<0.1	0.58	102.08	Включение
Прибайкалье	3	0.45	15.15	18.44	64.37	<0.1	0.57	<0.1	0.26	99.37	Матрица
		0.42	15.40	18.11	64.79	<0.1	0.65	<0.1	0.30	99.79	Матрица
		1.02	12.68	18.08	60.24	3.86	1.04	2.54	0.29	99.74	Включение
		0.91	9.23	18.52	56.18	9.85	0.88	5.75	0.26	101.59	Включение
		1.75	5.77	15.53	49.22	19.47	0.77	9.84	< 0.1	102.43	Включение
		0.32	13.34	17.86	59.49	<0.1	0.83	<0.1	4.12	96.07	Включение
		0.36	15.05	18.04	64.45	<0.1	1.14	0.11	0.33	99.54	Включение
		1.02	11.60	17.39	65.68	3.61	0.73	1.93	0.31	102.27	Включение
		1.98	11.54	17.71	63.59	2.12	0.83	1.33	0.40	99.50	Включение
		0.51	6.58	17.91	62.60	2.91	0.62	< 0.1	10.83	102.05	Включение
		2.71	9.43	17.67	61.58	5.50	0.88	3.40	0.26	101.43	Включение
		2.31	12.60	17.87	64.24	1.48	0.99	0.14	2.22	101.85	Включение
	4	0.29	15.71	18.26	64.90	< 0.1	0.60	0.22	< 0.1	100.10	Матрица
		0.42	15.91	18.29	64.04	н.о.	0.60	0.22	0.10	99.57	Матрица
		0.25	15.61	18.08	62.46	0.18	0.44	0.19	0.69	97.91	Включение
		0.39	16.17	20.39	64.57	< 0.1	0.62	0.15	0.11	102.41	Включение
		0.37	15.35	18.56	64.56	<0.1	0.58	0.23	1.83	101.49	Включение
		0.48	13.60	18.64	63.60	<0.1	0.52	0.34	3.03	100.24	Включение
		0.39	15.40	18.43	64.75	<0.1	0.59	0.26	0.11	99.94	Светлая фаза
		0.20	14.46	17.54	59.82	9.29	0.51	0.19	0.11	102.11	Включение
		1.05	10.53	20.41	62.01	1.65	0.58	5.73	0.13	102.10	Включение
	5	0.38	15.89	18.43	65.37	<0.1	<0.1	<0.1	<0.1	100.16	Матрица
		0.82	14.45	18.94	63.42	<0.1	<0.1	<0.1	0.442	98.16	Включение
		0.49	13.35	21.37	58.89	4.80	0.51	0.13	0.10	99.65	Включение
		0.20	15.02	17.43	58.27	< 0.1	< 0.1	Н.О.	5.57	96.65	Включение

Химический состав минеральных фаз и включений в амазонитах (мас. %).

Примечание. 1, 2 – г. Плоская, Кейвы, Кольский полуостров: 1 – голубой амазонит, 2 – зеленый амазонит; 3 – рудник Слюдянка, копь Кабера; 4, 5 – Приольхонье: 4 – Улан-Нур, ж. Западная, 5 – Нарин-Кунта; н.о. – не обнаружено (обозначает отсутствие значений).

Метрологические характеристики методики анализа оценены на образцах сравнения известного состава, аттестованных как стандартные образцы предприятий в Объединенном институте геологии, геофизики и минералогии СО РАН (Новосибирск), и удовлетворяют требованиям, предъявляемым ко 2-й категории анализов [ОСТ 41-08-212-04, 2004; ОСТ 41-08-265-04, 2004]. Правильность определения низких содержаний Rb, Cs, Pb в исследуемых образцах определяли путём сопоставления данных РСМА с результатами независимых методов спектрального и химического анализов.

Неоднородность распределения примесных элементов в матрице амазонитов и минеральных фазах дополнительно была изучена картированием в режиме растрового электронного микроскопа в обратно рассеянных электронах и в характеристическом рентгеновском RbLa-, CsLa- и PbMa - излучении.

Результаты исследований показали, что основу всех исследуемых амазонитов составляет калиевый полевой шпат. По его матрице во всех образцах наблюдаются темные, светлые минеральные фазы и яркие, ограненные включения различной формы и размеров. Размер выделяемых фаз и включений изменяется от 2 до 100 микрон. Основной состав матрицы всех исследуемых образцов достаточно однороден по содержанию калия, натрия, алюминия, кремния. Примесные элементы (Rb, Cs, Pb) распределены в ней неравномерно и присутствуют в различном процентном соотношении. Минеральные фазы и включения в образцах амазонитов выражены более разнообразным составом. Так, в амазонитах Кольского полуострова наблюдаются фазы и включения с высокими содержаниями оксида свинца, изменяющимися от 0.5 до 16 мас. %. Содержания рубидия определены в них на уровне предела обнаружения. Цезий не обнаружен, за исключением единичных значений. Содержания оксида железа определены только в некоторых включениях и изменяются от 0.1 до 10 мас. %. Амазониты Прибайкалья характеризуются включениями с более высокими содержаниями редких щелочных элементов, а также Fe, изменяющимися в различном процентном соотношении. Содержания PbO изменяются от 0.3 до 11; Rb₂O от 0.4 до 1; Cs₂O от 0.2 до 10; FeO от 0.2 до 19 мас. %.

Таким образом, по данным рентгеноспектрального электронно-зондового микроанализа удалось выявить неоднородность состава как основной матрицы амазонитов, так и включений в ней, а также в целом изучить особенности распределения редких элементов в образцах амазонита из редкометалльно-редкоземельных пегматитов различных регионов России.

Литература

ОСТ 41-08-212-04. Стандарт отрасли. Управление качеством аналитических работ. Нормы погрешности при определении химического состава минерального сырья и классификация методик лабораторного анализа по точности результатов. – Москва, 2004. – 24 с.

ОСТ 41-08-265-04. Стандарт отрасли. Управление качеством аналитических работ. Статистический контроль точности (правильности и погрешности) результатов количественного химического анализа. – Москва, 2004. – 80 с.

Павлова Л.А., Белозерова О.Ю., Парадина Л.Ф., Суворова Л.Ф. Рентгеноспектральный электронно-зондовый микроанализ природных объектов. Новосибирск: Наука, 2000. 223 с.

Рид С.Дж.Б. Электронно-зондовый микроанализ и растровая электронная микроскопия в геологии. – М.: Техносфера, 2008. – 232 с.

Шмакин Б.М., Загорский В.Е., Макагон В.М. Гранитные пегматиты. Т.4. Редкоземельные пегматиты. Пегматиты необычного состава. – Новосибирск. Наука. 2007. – 432 с.