СОПОСТАВЛЕНИЕ ГЕОХИМИИ ГИПЕРБАЗИТ-БАЗИТОВЫХ МАССИВОВ ДОКЕМБРИЙСКИХ ТЕРРЕЙНОВ В ЮЖНОМ ОБРАМЛЕНИИ СЕВЕРО-АЗИАТСКОГО КРАТОНА

<u>Глазунов¹ О.М.</u>, Радомская¹ Т.А., Салаев² А.В., Власова¹ В.Н.

¹Институт геохимии им. А.П. Виноградова СО РАН, г. Иркутск, e-mail: glazunov@igc.irk.ru ²Управление по недропользованию по Иркутской области, г. Иркутск

Проблема пополнения ресурсов никеля и платиноидов не теряет своей актуальности в Южной Сибири. В этом отношении работы Л.В. Таусона помогают вскрывать закономерности распределения рудных элементов в интрузивах разного состава, глубины и источника.

На границе с Северо-Азиатским кратоном в пределах Саянской никель-платиноносной провинции ареалы гипербазитов находятся в трёх крупных докембрийских террейнах (от Прибайкалья на запад): Шарыжалгайском с возрастом гнейсового протолита (3.6-3.1 млрд лет), Бирюсинском (2.9-2.5 млрд лет) [Ножкин и др., 2001], Канском (2.4-2.3 млрд лет). Несмотря на различия в возрасте и составе протолита, гипербазиты перидотит-пироксенит-габбрового состава с кумулятивными структурами разных террейнов сближает пирротин-пентландит-халькопиритовая минерализация. А.С. Мехоношин объединяет их в Восточно-Саянский металлогенический пояс.

В пределах Шарыжалгайского террейна гипербазиты образуют будинированные тела, которые вытягиваются в отдельные полосы и представлены, в основном, перидотитами и пироксенитами. Они переслаиваются с кристаллосланцами, эндербитами, продуктами гранулитового метаморфизма, характеризуются накоплением тяжёлых РЗЭ и положительной Еи аномалией [Горнова, 1989]. Содержания некогерентных элементов (Zr – 10-100 г/т, Hf – 0.2-1.5 г/т) близки к концентрациям в коматиитах. Элементы платиновой группы (ЭПГ) рассеяны в межзерновом пространстве, находятся в дисперсной форме. В них выдерживается отношение Os > Ru при превалирующем положении Pt (10-25 мг/т) над Pd (6-20 мг/т). Содержания Iг составляют 0.04-1.2 мг/т, никеля – до 1960 г/т (табл.). По составу они приближаются к субстрату архейской необеднённой мантии. Особенности геохимии архейских гипербазитов можно объяснить зарождением расплава на ранних стадиях геологической истории Земли и их становлением недалеко от очага генерации [Глазунов, 1981].

В Алхадырском тектоническом блоке Бирюсинского террейна рудные поля представлены субкольцевыми и линейными телами. Массивы дунит-верлит-габбрового состава с пентландит-пирротин-халькопиритовой минерализацией несут, кроме никеля, повышенные (до 20 г/т) концентрации ЭПГ. Основными носителями платиновых металлов являются: сперрилит, ирарсит, холингвортит, висмутотеллуриды Pd [Mekhonoshin, Kolotilina, 2011]. Содержание никеля в перидотитах зависит от концентрации MgO. Локализация руд происходит в нижних частях интрузивов [Мехоношин, Колотилина, 2006]

В пределах Канского террейна выделяются несколько ареалов тел гипербазитов. Центральный ареал состоит из дунит-пироксенит-габбровых массивов, в которых находятся платиноидно-медно-никелевые месторождения кингашского типа с подсчитанными запасами. Массивы отличаются геохимической зональностью и преимущественным накоплением в придонной части интрузивов Ni, Cu, ЭПГ (до 17 г/т) за счёт процесса ликвации [Глазунов и др., 2003]. Количество Pt в дунитах обычно преобладает над Pd, тогда, как в верлитах наблюдается обратная картина [Радомская, 2012]. В отличие от пород Шарыжалгайского блока в перидотитах Кингашского массива концентрации Ru > Os. В рудах встречаются висмутотеллуриды Pd, мончеит, фрудит, паоловит, сперрилит, ирарсит. Кингашское рудное поле имеет сложное строение, подчёркнутое гравитационными ступенями и зонами мигматизации.

Канский гнейсовый блок от Шарыжалгайского и Бирюсинского отличается тем, что рифтовая структура Кингашского рудного поля заполнена, в основном, метабазальтами мелапикритоидной формации, обогащёнными Ni, Cr, Cu.

Таблица. Состав ультраосновных пород докембрийских террейнов

Террейн	Канский				Бирюсинский		Шарыжалгайский		
Название массива	Кингаш		Игиль	№ 42	Хунга	Желос	Кундуй	Хогот	Крутая Губа
№ пробы	C-1-110	C-4- 164	06-IG- 38	06-IG-16	502	63a	6/3	4136- 4	80-ΚΓ- 28
№ п/п	1	2	3	4	5*	7*	8	9	10**
SiO ₂	39.90	42.96	46.28	47.66	45.96	43.41	48.98	42.84	42.57
TiO ₂	0.18	0.39	0.02	0.02	0.50	0.48	0.13	0.69	0.51
Al_2O_3	2.58	4.55	0.89	1.34	9.85	7.55	2.41	3.73	4.59
Fe2O3	4.78	8.56	4.14	3.98	4.95	6.73	12.03	20.14	4,83
FeO	7.93	4.78	4.62	5.66	7.18	5.27			10.90
MnO	0.19	0.17	0.11	0.10	0.14	0.19	0.18	0.18	0.18
MgO	43.13	33.94	43.,57	40.37	21.44	30.61	33.85	31.85	32.23
CaO	0.78	2.88	0.22	0.70	8.51	5.45	2.28	0.46	2.96
Na ₂ O	0.02	0.82	0.02	0.02	1.12	0.14	0.08	0.05	0.75
K ₂ O	0.29	0.12	0.02	0.02	0.31	0.14	0.03	0.03	0.40
P_2O_5	Не обн.	0.07	0.02	0.02	0.03	0.03	0.03	0.03	0.07
Sr	<20	-	< 50	<50	170	60	73	60	81
Cr	2500	4900	2200	3300	2300	8300	10600	5690	780
Ni	1500	4600	2100	1900	900	1500	1730	1960	1700
Cu	65	4600	20	21	96	72	1310	408	65
Co	120	200	103	90	77	70	190	200	120
Zn	90		47	90	66	23	118	130	209
V	39	260	50	50	160	120	110	170	78
Os	0.1	0.72	-	-	-	-	0.97	0.34	-
Ir	0.68	10.2	1.1	19	-	-	0.4	1.2	0.55
Ru	1.31	5.4	5.2	2	-	-	0.58	0.16	-
Rh	0.9	4.8	-	-	-	-	0.9	0.6	-
Pt	32.6	2628	7.5	9.5	-	7.3***	7.6	10.9	25.2
Pd	21.8	277	3.7	5.6	-	8.9***	3.2	1.6	10.2
Re	0.7	6.70	-	-	-	-	0.16	0.15	-

Примечание. Анализы выполнены в ИГХ СО РАН, г. Иркутск: петрогенные элементы (мас. %) — силикатный анализ (аналитик Т.В. Ожогина) и метод РФА (аналитик А.Л. Финкельштейн); редкие элементы (г/т) — атомно-абсорбционный (аналитик Л.П. Фролова), количественный спектральный (аналитик Л.Н. Одареева) и атомно-эмиссионный (аналитик И.Е.Васильева) анализы; ЭПГ (мг/т) — метод ISP-MS (аналитик В.Н. Власова). * — Пробы И.Ф. Свириной, Г.М. Свирина, 1990 г. ** — [Горнова М.А., 1989], ***— данные А.В. Салаева. Не обн. — элемент не обнаружен, прочерк — элемент не определялся.

Магнитно-плотностное моделирование выявило под Кингашским рудным полем неглубокое залегание условной поверхности Мохо на глубине 20-25 км при резком её погружении в сторону Сибирской платформы [Глазунов и др., 2011]. В Бирюсинском и Шарыжалгайском террейнах она достигает 40-50 км [Очерки..., 1977]. Полоса наиболее

рудоносных интрузий в нём проектируется на проседание поверхности Мохо (по набл. Δg м Γ л), которое совмещается с блоком «разуплотнённых» базальтов на глубине, что можно интерпретировать как результат дополнительного подплавления и собирательной концентрации рудных элементов в изначальном расплаве.

Наиболее продуктивный этап формирования Кингашских месторождений приходится на период 1.460-1.380 млрд лет (MSWD = 0.33, NdI = 0.511005 ± 0.000050). Метаморфизм относится к интервалу 460-470 млн лет и сопровождается привносом в гипербазиты Au, Ag, Sb, As.

К управляющим факторам высокой рудоносности гипербазитов Кингашского рудного поля можно отнести их оформление в режиме раннего субконтинентального рифтинга, многокамерный характер подводящих каналов и импульсивную подпитку рудными расплавами. Важное значение имеют сближенность рудного поля с флюидно-проводящими зонами Саянского линеамента и малая мощность консолидированной коры (18-20 км).

Высокая рудоносность гипербазитов Канского террейна согласуется с повышенным уровнем Сг и Ni вмещающих амфиболитов [Ножкин, Туркина, 1993] по сравнению с протолитом Шарыжалгая, насыщенным щелочами и отражающим начальные стадии консолидации гранитного слоя [Петрова, Левицкий, 1984].

Наиболее рудоносные гипербазиты Канского и Бирюсинского террейнов выделяются повышенным содержанием Al_2O_3 , CaO, Ni, Cr и Cu относительно гипербазитов Шарыжалгая, где повсеместно отмечаются аномалии щелочей, P_2O_5 , Zn, Rb и Sr (рис.).

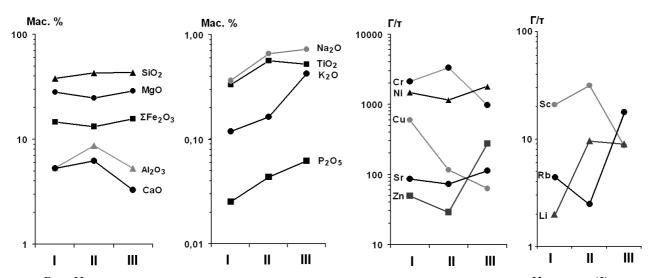


Рис. Изменение содержания петрогенных и рудных элементов в перидотитах Канского (I), Бирюсинского (II) и Шарыжалгайского террейнов (III).

Изначальной предпосылкой генезиса богатых платиноидно-медно-никелевых руд в Канском террейне послужила обогащённая аномальная мантия EM-II (87 Sr/ 86 Sr = 0.7060-0.7066; 143 Nd/ 144 Nd = 0.5125-0.5130; ϵ Nd = 2.6-3.8) [Глазунов и др., 2003], активизированная астеносферным влиянием [Мегакомплексы..., 1988].

Что касается гипербазитов Шарыжалгая, то по составу они приближаются к архейской примитивной мантии. «Сухая» система с восстановительными флюидными условиями не способствовала собирательной локализации элементов в рудные залежи. Для генезиса рудоносных гипербазитов Бирюсинского террейна была характерна знакопеременная тектоническая динамика с ярко выраженным проявлением диапирового внедрения гипербазитов, которое завершается образованием разнотипных рудных тел. На границе Бирюсинского и Шарыжалгайского блоков по сейсмопрофилированию отмечается высокоградиентная зона прохождения сейсмических волн (8.0-8.55 км/с), связанная с деструктивностью земной коры [Суворов и др., 2010; Очерки....., 1977].

По мере омоложения гнейсовых протолитов (AR_1-PR_2) от Прибайкалья к западу, снижения метаморфизма и мощности земной коры возрастает рудная нагрузка

ультрамафитов с образованием в них крупных платиноидно-медно-никелевых месторождений, усложняются структуры рудного поля, гранитные массивы выдвигаются за его пределы.

Таким образом, исходя из масштабов ультраосновного магматизма и тенденций изменения их химизма, представляется возможным говорить о стадиях в эволюции подкорового слоя. Просматривается влияние мантии на геохимическое концентрирование в гипербазитах никеля, меди, платиноидов в зависимости от глубины их формирования и степени фракционирования в процессе аккреции террейнов к Северо-Азиатскому кратону. Отмеченная картина находит отражение в азимутальной сейсмической анизотропии скорости прохождения сейсмических волн в мантии [Зорин, Турутанов, 2004; Павленкова, 2007].

Литература

Глазунов О.М. Геохимия и рудоносность габброидов и гипербазитов. – Новосибирск: Наука. Сиб. отд-ние, 1981. – 192 с.

Глазунов О.М., Богнибов В.И., Еханин А.Г. Кингашское платиноидно-медно-никелевое месторождение. – Иркутск: Изд-во ИГТУ, 2003. – 192 с.

Глазунов О.М., Радомская Т.А., Глазунова Т.Л. Глубинные источники и эволюция платиноидно-медно-никелевого парагенезиса Кингашского рудного поля (КРП) // Платина России. Сб. науч. трудов. Т. VII. / Гл. ред. чл.-корр. РАН Д.А. Додин. – Красноярск, 2011, с. 448-457.

Горнова М.А. Геохимия и генезис архейских ультрамафитов Шарыжалгайского гранулитгнейсового комплекса: Автореф. дис. ... канд. геол.-минералог. наук, Иркутск, 1989. – 15 с.

Зорин Ю.А., Турутанов Е.Х Региональная изостатическая сила тяжести и мантийные плюмы в южной части Восточной Сибири (Россия) и Центральной Монголии // Геология и геофизика. 2004. Т. 45. № 10. С. 1248-1258.

Мегакомплексы и глубинная структура земной коры Алтае-Саянской складчатой области. В. С. Сурков, В. П. Коробейников, А. В. Абрамов и др. – М.: Недра, 1988. – 195 с.

Мехоношин А. С., Колотилина Т. Б. Петролого-геохимические особенности ультрабазитов южного обрамления Сибирского кратона и критерии поисков сульфидно-никелевых руд // Руды и металлы. 2006. № 6. С. 26-30.

Ножкин А.Д., Туркина О.М. Геохимия гранулитов канского и шарыжалгайского комплексов. – Новосибирск: ОИГГиМ СО РАН, 1993. – 219 с.

Ножкин А.Д., Туркина О.М., Бибикова Е.В., Пономарчук В.А. Состав, строение и условия формирования метаосадочно-вулканогенных комплексов Канского зеленокаменного пояса // Геология и геофизика. 2001. Т. 42. № 7. С. 1058-1078.

Очерки по глубинному строению Байкальского рифта. Авт. коллектив.: Зорин Ю.А., Глевский Г.Н., Голубев В.А. и др. / Отв. ред. член-корр. АН СССР Н.А. Флоренсов. – Новосибирск: Наука. Сиб. отд-ние, 1977. – 153 с.

Павленкова Н.И. Результаты сейсмического профилирования с мирными ядерными взрывами на территории России // Модели земной коры и верхней мантии. Матер. Междунар. науч.-практ. семинара 18-20 сент. 2007 г. СПб: Изд. ВСЕГЕИ, 2007. С. 142-146.

Петрова З.И., Левицкий В.И. Петрология и геохимия гранулитовых комплексов Прибайкалья. – Новосибирск: Наука, 1984. – 201 с.

Радомская Т.А. Минералогия и геохимия Кингашского платиноидно-медно-никелевого месторождения (В. Саян): Автореф. дис. ... канд. геол.-минералог. наук, Иркутск, 2012. 24 с.

Суворов В.Д., Мишенькина З.Р., Мельник Е.А. Сейсмические верхнемантийные корни структур фундамента Сибирской платформы по сейсмическому профилю Рифт // Геология и геофизика. 2010. Т. 51. № 8. С. 1134-1150.

Mekhonoshin A.S., Kolotilina T.B. Ni-Cu-PGE sulfide deposits related with neoproterozoic picritic magmatism (Southern Siberia) // Large Igneous Provinces of Asia: Mantle Plumes and Metallogeny (abstract volume). – Irkutsk: Petrographica, 2011. P. 160-161.