СОПОСТАВЛЕНИЕ ГЕОХИМИИ ГИПЕРБАЗИТ-БАЗИТОВЫХ МАССИВОВ ДОКЕМБРИЙСКИХ ТЕРРЕЙНОВ В ЮЖНОМ ОБРАМЛЕНИИ СЕВЕРО-АЗИАТСКОГО КРАТОНА

О.М. Глазунов¹, Т.А. Радомская¹, А.В. Салаев², В.Н. Власова³

 Учреждение Российской академии наук Институт геохимии им. А.П. Виноградова, г. Иркутск, e-mail: glazunov@igc.irk.ru
Ангарская геологическая экспедиция ФГУНПГП «Иркутскгеофизика», г. Иркутск, e-mail: avsalaev@mail.ru
Учреждение Российской академии наук Институт геохимии им. А.П. Виноградова, г. Иркутск, e-mail: vlasova@igc.irk.ru

Основные цели работы: • Сравнение состава ультраосновных пород в Шарыжалгайском, Бирюсинском и Канском террейнах в новой Саянской Ni-Pt провинции по комплексу геологогеохимических и геофизических данных. Выяснение роли глубинной структуры и источника богатых Pt-Pd-Cu-Ni руд. Выявление перспективных объектов.

Саянская платиноидно-медно-никелевая провинция в границах Канско-Бирюсинско-Шарыжалгайского террейна по южной границе Северо-Азиатского кратона О.М. Глазунов, 2010. Тектоническая основа, по (Сезько, 1990) с дополнениями Е.Н. Алтухова и др. (1990), А.И. Мельникова (2005).

1 – Сибирская платформа (СП); 2-3 – террейны различной тектонической напряжённости, состава, возраста, метаморфизма и степени рудоносности: 2 – раннеархейские: Шарыжалгайский и др. (Ш), (3,6 – 3,1 млрд. лет), 3 – позднеархейский Бирюсинский (Б) (2,5 – 2,9 млрд. лет) (Ножкин и др., 2001), 4 – позднеархейский-протерозойский Канский (К) (2,3-2,4 млрд. лет); 5 – раннепротерозойские троги и прогибы, 6 – рифей-протерозойский комплекс; 7 – область Каледонской складчатости; 8 – Главный Саянский линеамент, как проводник для флюидно-интрателлурических потоков; 9 – массивы ультрамафитов перспективные на сульфидное платиноидно-медно-никелевое оруденение (нанесены вне масштаба); 10 – глубина до поверхности Мохо и мощность земной коры (км); 11 – нарастание сейсмической анизотропии мантии (Зорин, Турунтаев, 2004) и предполагаемые направления её фракционирования; 12 – ось современной тепловой аномалии (t >1000° C) с пластическим течением на поверхности Мохо и подъёмом астеносферного клина на высоту 120 км (Мегакомплексы...,1988); 13 – предполагаемая проекция головки мантийного диапира гранатовых перидотитов высокого давления (Р >28 кбар) (Глазунов, Богнибов и др., 2003); 14 – нарастание потенциальной рудоносности ультрамафитов и направление аккреции террейнов.

Кингашское рудное поле Саянской никель-платиноносной провинции с элементами геодинамики и прогноза.

Составлена О.М. Глазуновым (ИГХ СО РАН) на геологической основе В.И. Юркина (м-б 1:200 000, 1968 г.) [19] с дополнениями А.Н. Смагина, А.В. Ренжина, 2006, ОАО «Красноярскгеология» и Г.Р. Ломаевой, ООО «Геокомп», 2005 г.

15 – изогипсы поверхности верхней мантии, км (по данным Ф.Д Лазарева и др. (2005) Норильского филиала ВСЕГЕИ);

1 – четвертичные аллювиальные отложения крупных водотоков;

16 – буквами отмечены месторождения Pd-Pt-Cu-Ni руд с подсчитанными запасами (К – Кингашское, <u>BK</u> –

Верхнекингашское), перспективные массивы (КУ – Куевское), цифрами отмечены номера массивов (по Н.Г. Дубинину, 1962).

Карта локальных аномалий магнитного поля Канского террейна

Ф.Д Лазарев и др., 2005 (Норильский филиал ВСЕГЕИ)

УСЛОВНЫЕ ОБОЗНАЧЕНИЯ:

Рудное поле Бирюсинского террейна.

Составил А.В. Салаев, 2007.

Структурно-геологическая карта Шарыжалгайского выступа. Составил А.И. Мельников по материалам ПГО «Иркутскгеология» АА. Прокофьева, АА Шафеева и личным наблюдениям.

Геологический разрез будин ультрамафитов в устье р. Крутая губа (138-й км Кругобайкальской ж.д.) (по О.М. Глазунову, М.А. Золотиной).

1- роговообманковые перидотиты и пироксениты,

- 2- двупироксеновые кристаллосланцы,
- 3- мигматизированные гнейсы,
- 4- эндербиты,
- 5- жилы разнозернистых гранитов,
- 6- зоны катаклаза.

Положение пород ультрабазитов докембрийских блоков на диаграмме по (Барсукову, ______ Дмитриеву, 1972).

Канский блок Бирюсинский блок Шарыжалгайский блок

 точки составов породообразующих минералов из пород Кингашского массива Изменение содержания петрогенных и рудных элементов в перидотитах Канского (К), Бирюсинского (Б) и Шарыжалгайского террейнов (Ш)

Содержание благородных металлов в породах нормированных к хондриту C1 (Naldrett, Duke, 1980).

Редкоземельные спектры ультрабазитов Канского, Бирюсинского и Шарыжалгайского террейнов.

Нормирование выполнено по содержанию РЗЭ в хондрите C1 (Boynton W. V., 1984)

Ании теский состав ультраосновных пород и руд (мас. 70) Саянской металлог сни теской провинции												
	1	2	3	4	5	6	7	8	9	10	11	12
SiO ₂	45.20	46.63	46.77	41.44	42.88	37.5	34.90	39.68	43.89	41.02	47.6	43.2
TiO ₂	0.56	0.52	0.41	0.45	0.39	0.43	0.46	0.15	0.32	1.91	0.25	0.05
Al ₂ O ₃	6.07	8.38	7.09	5.93	6.16	5.41	5.49	1.74	₹ <u>}`</u> ()₹}	7,42	5.35	2.50
Fe ₂ O ₃	7.70	4.59	4.56	12.70	5.04	12.35	17.10	4.95			2.20	-
FeO	10.18	6.47	7.49	5.85	6.62	See.	-	4.15	8.77	10.14	5.80	8.30
MnO	0.18	0.16	0.16	0.26	0.16	0.14	0.15	0.11			0.15	- 10
MgO	27.58	25.17	25.78	32.08	31.98	29.72	26.74	36.68	38.49	25.40	31.70	40.29
CaO	4.05	6.23	5.24	5.74	4.92	4.22	3.46	0.84	2.75	5.55	6.40	2.50
Na ₂ O	0.82	0.93	0.85	0.22	0.57	0.01	<0.20	0.09	0.37	0,48	0.40	0.21
K ₂ O	0.59	0.47	0.60	0.07	0.15	0.04	0.06	0.09	0.12	80.0	0.15	0.04
P_2O_5	0/04	0.12	0.15	0.04	0.03	0.04	0.04	0.04	0.05	0.03	-	0.01
NiO	1860	1110	2110	2400	1800	4400	15200	2400	2800	1500	-	2800
CoO	140	76	120	130	130	150	378	104	-	-	-	-
Cr ₂ O ₃	970	3330	3530	3200	5800	2850	4500	1300	4200	2100	-	3900
CuO	40	46	330	270	140	180	22	65	-	-	-	400

Химический состав ультраосновных пород и руд (мас. %) Саянской металлогенической провинции

Примечание. Пироксениты: 1- массив Крутая Губа (32 анализа) [Горнова, 1989]; 2-3 - массивы Черемшанский и Задойский [Мехоношин и др., 1999]; ультраосновные породы: рудоносных массивов 4- Токты-Ой и 5- Желос [Колотилина, 1999]; 6- ср. по сульфидизированным перидотитам массива Кингаш и 7- богатые руды ликвационного горизонта Кингашского месторождения [Глазунов и др., 2003]; 8- ультрабазиты идарского комплекса (936 ан.). Региональная мантия: 9- архея, 10 – протерозоя; 11- пироксенитовая мантия [Кутолин и др., 2002]; 12- гранатовые перидотиты Игильского массива. NiO, CoO, Cr2O3, CuO – в г/т.

Разрез литосферы вдоль геотраверза оз. Зайсан – Нижнеудинск (по П. И. Морсину, В. С. Суркову и др., 1988).

1 – Осадочный чехол; земная кора: 2 – гранитогнейсовый и
3 – эклогитобазальтовый слои; М – поверхность Мохо; 4 – верхняя мантия;
5 – астеносфера. Цифры – плотность.

Схема глубинного магнитно-плотностного моделирования Кингашского рудного поля

Ф.Д. Лазарев и др., 2005 (Норильский филиал ВСЕГЕИ)

Прогностический разрез через Кингашское рудное поле от р. Кан до Сибирской платформы. (Составлена О.М. Глазуновым.)

1 – чехол Сибирской платформы; 2 – кристаллический гранитогнейсовый фундамент AR2, 3 – эклогит-базальтовый слой, 4 – условно-редуцированный разуплотнённый эклогитбазальтовый слой; 5 – гипербазиты с Pd-Cu-Ni минерализацией кингашского комплекса; 6 гипербазиты с Pt-Ni-Cr минерализацией идарского комплекса; 7 – гранатовые перидотиты; 8 – поверхность верхней мантии, км; 9пироксенитовый ингредиент мантии; 10 – перидотитовый ингредиент мантии; 11 – зоны мигматизации; 12 интрателлурические потоки; 13 основные разломы; 14 – гравитационная ступень; 15 – деструктивные зоны; 16 – плотность (г/см3) и скорость прохождения сейсмических волн в (км/с).

Канский террейн выделяется пониженной мощностью земной коры и погружением поверхности Мохо к северо-востоку. Её подъёмы к поверхности до глубины 30-35 км отмечены диапирами гипербазитов реститового ряда. На зоны погружения проектируются кингашские Pd-Cu-Ni месторождения и поля рудоносных гипербазитов, наиболее перспективных на сульфидное оруденение.

Выводы:

От Шарыжалгайского террейна на Северо-Запад вдоль границы Сибирской платформы по мере омоложения гнейсовых протолитов (3.6-3.1)-(2.9-2.7)-(2.65-2.4) млрд. лет и снижения их степени метаморфизма:

 A) возрастает потенциальная рудоносность (продуктивность) вплоть до образования крупных Pt-Cu-Ni месторождений Кингашского типа;

Б) уменьшается мощность гранито-гейсового слоя. Крупные массивы гранитов оконтуриваются за пределами рудных полей, подчёркивая их границы гравитационными ступенями; **В)** усложняется структурный план рудных полей (Бирюсинского и Кингашского), отражённый в Канском террейне скоплением в земной коре крупных гравитирующих масс гипербазитов и неупорядоченным рисунком геофизической картины;

Г) смещается геохимический профиль интрузивов от рассеяно-дисперсной формы преимущественно Pt на самородно-концентрированный Pt-Pd, сопровождаемый высокими амплитудно-частотными характеристиками содержаний Ni, Cu, Cr, P3Э и метасоматическими минеральными парагенезисами.

Важным фактором для локализации руд и образования богатых месторождений является:

А) снижение мощности земной коры при сохранении её субконтинентального разреза;

Б) тектонически телескопированный режим развития трога, обеспечивающий спокойные условия становления массивов;

В) наличие гравитационных ступеней и близость к главному Саянскому разлому, как проточному каналу интрателлурических потоков.

Изменение состава и металлогенического профиля ультраосновных пород по латерали можно экстраполировать с различным уровнем дифференцированности и глубиной становления магматических очагов. Геофизически эта картина отражается в азимутальной сейсмической неоднородности мантии (Зорин Ю.А., Турутанов Е.Х., 2004 г) и высокоградиентных полях скоростей прохождения сейсмических волн (Павленкова Н.И., 2007). Подобная глубинная структура формируется по мере аккреции террейнов к Северо-Азиатскому кратону. Продуктивность гипербазитов по ЭПГ, Ni и Cu в Канском террейне связана с эволюцией аномальной мантии на рубеже 1460-1380 млн. лет. Глубина допустимого источника образования месторождений предполагается на уровне шпинелевой фации с участием пироксенитового ингредиента мантии.

Многокамерный тип магматических каналов обеспечивает непрерывно-прерывистое прокачивание первичных мантийных расплавов и ликвационногравитационную отсадку в камерах.

Спасибо за внимание!