ГЕОХИМИЧЕСКИЕ ХАРАКТЕРИСТИКИ ОСАДКОВ ОЗЕРА ЭЛЬГЫГЫТГЫН (ЧУКОТКА) – ИНДИКАТОРЫ ИСТОЧНИКОВ СНОСА И ПАЛЕОКЛИМАТИЧЕСКИХ ИЗМЕНЕНИЙ В НЕОПЛЕЙСТОЦЕНЕ

Drilling Project

¹Минюк П.С., ¹Борходоев В.Я., ¹Горячев Н.А., ²Венрих Ф.

¹Северо-Восточный КНИИ ДВО РАН, Магадан

²Институт геологии и минералогии, Кельнский ун-т, Кельн

• Певек

Билибино

Марково •

Анадыры

Схематическая геологическая карта района озера. Меловые породы

Диаграмма (Na₂O+K₂O) – SiO₂ (Le Maitre et al., 2002) для вулканических пород района оз. Эльгыгытгын. <u>Геохимические данные</u>по (Белый, Белая, 1998)

Коэквуньская св
Воронинская св
Пыкарваамская св
Эргываамская св

Доминирующие породы эргываамской и пыкарваамской свит попадают в риолитовую зону. Они главный источник обломочного материала, поступающего в озеро

Глубокие скважины бурения озера. Мощность осадков 315 м

Метод и оборудование

•Сплошной отбор образцов 2 см мощности

•Породообразующие элементы определены методом рентгенофлуоресцентного анализа на спектрометрах СРМ-25 и S4 Pioneer

•Редкие элементы определены на спектрометрах VRA-30 и S4 Pioneer

•Для оценки относительного содержания органики использованы потери при прокаливании. Образцы в течение часа прогревались при температурах 550°С и 1000°С

Определены содержания SiO₂, Al₂O₃, TiO₂, Fe₂O₃, MnO, MgO, CaO, Na₂O, K₂O, P₂O₅, Rb, Zr, Sr, Y, Nb, Ba, Ni, Cr

При интерпретации геохимических кривых, сопоставлении с изотопными кривыми, выделении стадий учитывались:

•Радиоуглеродные и оптиколюминесцентные даты;

•Магнитохронология (событие Блейк, Брюнес-Матуяма;

- •Палинологические и диатомовые данные;
- •Органическая геохимия, биогенный опал;

•Литологические признаки;

•Скорости осадконакопления;

•Магнитные свойства

Коэффициенты корреляции (с) между главными и редкими элементами осадков оз. Эльгыгытгын

Исследовано 1215 образцов.

	SiO ₂	Al ₂ O ₃ TiO ₂	Fe ₂ O ₃	MnO	MgO	CaO	Na₂O	K ₂ O	P ₂ O ₅	Rb	Zr	Sr	Ва	Ni	Cr
SiO ₂	1.00														
Al ₂ O ₃	-0.89	1.00										R	ылег	арт	ra 🛛
TiO ₂	-0.74	0.62 1.00													
Fe ₂ O ₃	-0.82	0.49 0.69	1.00									нес	коль	ко гр	рупп
MnO	-0.26	0.01 0.22	0.51	1.00								Э	пеме	HTOE	B C
MgO	-0.81	0.77 0.83	0.65	0.08	1.00								высо	ким	И
CaO	0.12	-0.04 -0.34	-0.38	-0.29	-0.29	1.00						koad	hchiau	илац	тами
Na ₂ O	-0.04	0.02 0.10	-0.17	-0.12	-0.14	0.55	1.00					K030			
K ₂ O	-0.47	<mark>0.64</mark> -0.06	0.01	-0.31	0.22	0.49	0.31	1.00				K	oppe.	пяці	ии
P ₂ O ₅	-0.21	-0.16 0.03	0.56	0.52	-0.01	-0.25	-0.22	-0.29	1.00						
Rb	-0.66	0.82 0.19	0.22	-0.19	0.47	0.18	0.02	0.89	-0.22	1.00					
Zr	-0.63	0.55 0.82	0.48	0.13	0.55	0.01	0.53	0.22	-0.09	0.25	1.00				
Sr	0.19	-0.07 -0.38	-0.49	-0.34	-0.42	0.83	0.71	0.56	-0.31	0.23	0.08	.00			
Ва	-0.47	0.55 0.13	0.07	-0.20	0.21	0.56	0.49	0.86	-0.22	0.69	0.38	.62	1.00		
Ni	012	0.07 0.21	0.14	0.09	0.12	-0.02	0.06	-0.04	0.01	-0.04	0.22).05	0.01	1.00	
Cr	-0.38	0.25 0.60	0.47	0.21	0.50	-0.32	009	-0.20	0.12	-0.04	0.42).41	-0.11	0.78	1.00

Используемые индексы и отношения

Chemical index of alteration

 $CIA = [AI_2O_3 / (AI_2O_3 + CaO + Na_2O + K_2O)] \times 100$

Plagioclase Index of Alteration PIA = $[(Al_2O_3 - K_2O) / (Al_2O_3 + CaO + Na_2O - K_2O)] \times 100$

> Chemical index of weathering $CIW = [Al_2O_3 / (Al_2O_3 + CaO + Na_2O)] \times 100$

Chemical Proxy of Alteration CPA = $AI_2O_3 / (AI_2O_3 + Na_2O) \times 100$

Index B

 $(CaO^* + Na_2O + K_2O) / (Al_2O_3 + CaO^* + Na_2O + K_2O)$

Silica–Titania Index

 $STI = [(SiO_2/TiO_2) / ((SiO_2/TiO_2) + (SiO_2/AI_2O_3) + (AI_2O_3/TiO_2))] \times 100$

Гидролизный модуль

 $\Gamma M = (AI_2O_3 + TiO_2 + Fe_2O_3 + MnO)/SiO_2$

Отношения Rb/Sr, Ba/Sr, SiO₂/Al₂O₃, Потеря при прокаливании (LOI), Магнитная восприимчивость , намагниченность

Распределение отдельных элементов и индексов по разрезу Желтые полосы – осадки теплых стадий, нумерация стадий (MIS) по Bassinot et al., 1994

Теплые стадии: >> SiO₂, CaO, Na₂O, K₂O, Sr. Холодные стадии: >>Al₂O₃, TiO₂, Fe₂O₃, MgO, Ni, Cr, индексов изменения

$AI_2O_3 - SiO_2$ и $Fe_2O_3 - TiO_2$ диаграммы для осадков Красные (голубые) символы - теплые (холодные) стадии

Уменьшение отношения SiO₂/Al₂O₃ связано с уменьшением размера зерен

- Постоянное отношение для осадков теплых стадий
 - Разброс отношения для осадков холодных стадий
 - Потеря Al₂O₃ для осадков холодных стадий
 - Осадки холодных стадий более измененные
 - Уменьшение размерности осадков холодных стадий

Положительная корреляция между Fe_2O_3 и TiO_2

TiO₂ и Fe₂O₃ - Al₂O₃ диаграммы для осадков. Красные (голубые) символы - теплые (холодные) стадии

Ті/АІ отношение постоянно в современных профилях выветривания. При сильном выветривании Ті/АІ отношение увеличивается из-за потери АІ-содержащих фаз

•Больший разброс для осадков холодных стадий •Потеря Al₂O₃ •Оолее измененные осадки или Другие источники сноса для осадков холодных стадий

Диаграммы TiO₂ и Fe₂O₃ – Магнитная восприимчивость Красные (голубые) символы - теплые (холодные) стадии

Разброс данных показывает, что общее Fe₂O₃ и TiO₂ не связаны с магнитной восприимчивостью

Диаграммы TiO₂ и Fe₂O₃ – Парамагнитная компонента Js Красные (голубые) символы - теплые (холодные) стадии

Линейное распределение показывает, что Fe₂0₃ и TiO₂ связаны с парамагнитной компонентой намагниченности (Jsp) Связаны с парамагнитными минералами - Fe-и Tiсодержащими глинистыми минералами, силикатами, сульфидами...

Ni - Сг диаграмма

Красные (голубые) символы - теплые (холодные) стадии

Диаграмма Р₂О₅ (%) - MnO (%). Красные (голубые) символы-Теплые (холодные) стадии 3 4 0.8 0.6 $R^2 = 0.20$ 00 6 0.4 0.2 Ε 00 00 $R^2 = 0.66$ Depth 0 2.0 3.0 0.5 1.0 1.5 2.5 P205 11 •Прямая корреляция фосфора и марганца (лучшая для осадков теплых стадий) •Осадки холодных стадий на границе с

MnO

теплыми обогащены P₂O₅ и MnO

•Большая концентрации в нижних частях холодных субстадий 6.4, 6.6, 7.4, 8.4 и оптимальной 11.3

vivianit	_z3	8 <u>an3</u> p1					
Element	AN	Series	Net	unn. C	norm. C	Atom. C	Error
				[wt%]	[wt%]	[at%]	[%]
Carbon	6	K-series	2045	0.00	0.00	0.00	0.0
Aluminium	13	K-series	797	0.38	0.40	0.39	0.1
Phosphorus	15	K-series	44221	14.37	15.23	12.85	0.6
Potassium	19	K-series	592	0.17	0.18	0.12	0.0
Manganese	25	K-series	2951	1.49	1.58	0.75	0.1
Iron	26	K-series	64257	39.71	42.09	19.70	1.1
Oxygen	8	K-series	34126	38.21	40.51	66.18	4.8

Фосфор и марганец связываются с вивианитом

Состав вивианита по данным спектроскопии (QemScan), показывающий фосфор, железо и примесь марганца Диаграмма Fe₂O₃ (wt %) - MnO (wt %). Красные (голубые) символы - теплые (холодные) стадии, Фиолетовые – оптимальная 11.3, зеленые- холодные 6.6, 7.4 ст.

Отношение Fe/Mn часто используется как индикатор окислительной восстановительной среды. В воде редуцированные формы Fe менее стабильны, чем Mn, поэтому отношение Fe/Mn в осадках больше в восстановительной среде

•Отношение Fe/Mn больше для осадков холодных стадий, предполагая более восстановительную среду при накоплении

Тернарные диаграммы, показывающие тренд выветривания осадков и вулканических пород Красные (голубые) символы - теплые (холодные) стадии

Осадки озера – продукты выветривания, изменения местных коренных вулканитов

Геохимическая характеристика самой теплой стадии 11

Самые высокие концентрации SiO₂, (>биогенного опала) •Разбавление Al₂O₃, TiO₂, MgO, Na₂O, K₂O, CaO, Sr, Rb, Sr, Ba •Разбавление магнитной восприимчивости •Обогащение органикой, MnO, P₂O₅, Ni, Cr •Самая высокая палеопродуктивность •Окислительная среда

Геохимическая характеристика холодной стадии 7.4

Максимальные содержания TiO_2 , Fe_2O_3 , Zr, MnO, P_2O_3

- Восстановительная среда,
- максимальные отношения MnO/Fe₂O₃
- Образование тонкодисперсного вивианита и сидерита
 - Самая низкая палеопродуктивность
 - Постоянный ледовый покров

• Высокие уровни химического изменения осадков

Распределение отдельных элементов и индексов по разрезу Желтые полосы – осадки теплых стадий

Границы среднего и верхнего неоплейстоцена (основание теплой стадии 5.5) и нижнего и среднего неоплейстоцена (основание теплой стадии 11) геохимически наиболее ярко выражены, нижняя граница неоплейстоцена по геохимии не выделяется

