ТЕРМОДИНАМИЧЕСКАЯ МОДЕЛЬ НАТРИЕВОСИЛИКАТНОГО РАСПЛАВА КАК МЕТОД СОГЛАСОВАНИЯ БАЗЫ ДАННЫХ

О.Н. Королева¹, А.А. Тупицын², В.А. Бычинский²

¹ Институт минералогии УрО РАН, Россия, Миасс ² Институт геохимии им. А.П. Виноградова СО РАН, Россия, Иркутск Основная задача:

Изучение структуры расплава Na₂O-SiO₂ в зависимости от химического состава и температуры методом термодинамического моделирования

Дополнительные задачи:

- Сбор экспериментальных данных калориметрических исследований силикатов щелочных металлов
- Расчет отсутствующих термодинамических величин и согласование базы данных
- Сопоставление результатов моделирования с результатами высокотемпературной спектроскопии КР расплавов

В расплавах выделяют кремнекислородные тетраэдры пяти типов, каждый из которых имеет свою характеристическую полосу в спектрах КР

Изучить структуру расплавов в данных терминах - получить Qⁿ- распределение от состава и температур

Основы термодинамического подхода к силикатным расплавам

В кристаллических силикатах структурные единицы объединяются в группировки:

Предполагается, что свободные энергии Гиббса образования силикатов могут рассматриваться как термодинамические характеристики структурных единиц Q^n .

Согласно представлениям модели идеальных ассоциированных растворов в расплавах рассматриваются реакции между структурными единицами

$$2\mathbf{Q}^{\mathbf{n}} = \mathbf{Q}^{\mathbf{n}-1} + \mathbf{Q}^{\mathbf{n}+1}$$

$$k_n = \frac{N_{n-1} \cdot N_{n+1}}{N_n^2}$$

Спектры комбинационного рассеяния расплавов Na₂O-SiO₂

Изучаемые составы:

67%Na₂O·33%SiO₂

60%Na₂O·40%SiO₂

55%Na₂O·45%SiO₂

50%Na₂O·50%SiO₂

40%Na₂O·60%SiO₂

33%Na₂O·67%SiO₂

Моделирование спектров КР расплавов системы Na₂O-SiO₂

	Область частот, см ⁻¹	Интерпретация полос
Q ⁰	775-830	изолированный тетраэдр с четырьмя немостиковыми связями
Q ¹ '	805-858	концевой тетраэдр, находящийся на конце цепочечной структуры конечного размера
Q ¹	858-892	концевой тетраэдр, связанный одной мостиковой связью с другим таким же тетраэдром, является составляющей димера
Q2'	902-945	тетраэдр с двумя мостиковыми связями, соединённый с концевыми тетраэдрами Q ¹
Q ²	939-979	тетраэдр, связанный с такими же единицами Q ² , то есть является составляющей цепочки
Q ³ '	983-1016	тетраэдр, связанный с цепочечными тетраэдрами Q ² , является точкой ответвления от цепочечной структуры
Q ³	1031- 1109	тетраэдр, связанный мостиковыми связями с единицами Q ³

Коэффициенты перехода от интенсивностей полос спектров КР к содержанию структурных группировок

Использовалась методика, описанная в [Быков и др., 1987]

В стекле состава $40\% Na_2O{\cdot}60\% SiO_2$ присутствуют только тетраэдры Q^2 и Q^3

$$\begin{cases} n_2 = a_2 \cdot I_2 \\ n_3 = a_3 \cdot I_3 \\ \frac{n_3 + 2n_2}{n_2 + n_3} = \frac{\overline{HMK}}{Si} \end{cases}$$

 n_2 и n_3 , – относительные количества структурных единиц Q^2 и Q^3 I_2 и I_3 – интегральные интенсивности характеристических линий a_2 и a_3 – коэффициенты перехода

 $\frac{HMK}{Si}$ среднее число немостиковых атомов кислорода на один атом кремния (HMK/Si) = 2n/(1-n) для $nM_2O(n-1)SiO_2$

Коэффициент	Значение		
a ₀	2.56		
a ₁	1.53		
a ₂	1.23		
a ₃	1		

Результаты спектроскопии КР для расплавов состава 33%Na₂O·67%SiO₂

<i>Т</i> , К	Частоты колебаний, см ⁻¹			Концентрации структурных единиц Q ⁿ , %			k ₃
	Q ²	Q ^{3'}	Q ³	Q4	Q ³	Q ²	
293	954	1039	1109	10/11¹	80/79 ¹	10/10 ¹	0,015
473	950	1040	1107	10	80	10	0,014
553	951	1037	1106	10	80	10	0,014
633	951	1038	1105	10	80	10	0,015
793	948	1028	1101	11	78	11	0,018
913	945	1025	1099	11	78	11	0,019
1073	946	1023	1095	12	76	12	0,028
1153	939	1020	1095	14	72	14	0,037
1198	936	1016	1093	14	72	14	0,038
1243	937	1019	1092	15	70	15	0,047

¹- данные ЯМР работы Maekawa H. (1991)

Распределение Qⁿ структурных единиц в Na₂O-SiO₂ расплаве с увеличением температуры по данным спектроскопии КР

С ростом температуры константы равновесия реакций растут, равновесие сдвигается вправо, что проиллюстрировано на рисунках.

Распределение структурных единиц Qⁿ в системе Na₂O-SiO₂

Fig. 1. Chemical structure $(mNa_2O \cdot nSiO_2)$ of sodium silicate melts at various temperatures, over the composition region from 0 to 60 mol% Na₂O. (a) Solid line: 400 °C. Dashed line: 800 °C. (b) Solid line: 1000 °C. Dashed line: 1200 °C.

[Шахматкин и др., 2003]

Fig. 2. Chemical structure of the melts for the Na₂O-SiO₂ system. 1 - SiO₂, 2 - Na₂O·2SiO₂, 3 - Na₂O·SiO₂.

[Голубев и др., 2004]

Распределение структурных единиц Qⁿ в расплаве Na₂O-SiO₂ при 1300°C

Классический вид распределения структурных единиц в расплаве силиката натрия в зависимости от состава. Результаты получены в результате термодинамических расчетов по реакциям с использованием базы данных FACT (в базе отсутствуют ссылки на источник информации или способы оценки т/д величин).

Вследствие особенностей способов обработки результатов калориметрии и методов оценки неизвестных термодинамических свойств, в справочниках, монографиях и периодической научной литературе встречаются резко отличающиеся величины термодинамических потенциалов силикатов натрия, калия и лития.

Одна из главных причин грубых ошибок моделирования - ненадежность, недостоверность, взаимная несогласованность данных о термодинамических свойствах соединений. Для обеспечения термодинамических расчетов необходимо на основе заимствованных из справочной и научной литературы создать <u>согласованную систему термодинамических величин</u>

$$\Delta_{f}H^{\circ}(K_{2}Si_{4}O_{9};T_{C}) = \frac{-3402,429 \pm 5,02 \text{ кДж} \cdot \text{моль}^{-1} [\text{TKB}]}{-4320,080 \pm 6,00 \text{ кДж} \cdot \text{моль}^{-1} [\text{Geisinger, 1987}]};$$

$$H_{\text{пи}}^{\circ}(\text{Li}_{2}\text{SiO}_{3}) = \frac{28,033 \pm 2,1 \text{ кДж} \cdot \text{моль}^{-1} [\text{TKB, JANAF}]}{71,300 \pm 0,6 \text{ кДж} \cdot \text{моль}^{-1} [\text{Téqui, 1992}]};$$

$$H_{nn}^{\circ}(K_{2}SiO_{3}) = \frac{50,208 \pm 12,55 \text{ кДж} \cdot \text{моль}^{-1} [\text{ТКВ, JANAF}]}{20,000 \pm 10,00 \text{ кДж} \cdot \text{моль}^{-1} [\text{ТСИB}]};$$

$$C_{p}^{\circ}(K_{2}SiO_{3}; \pi) = \frac{190,000 \pm 20 \ \text{Д}\pi \cdot \text{K}^{-1} \cdot \text{моль}^{-1} [\text{ТСИВ}]}{172,912 \ \text{Д}\pi \cdot \text{K}^{-1} \cdot \text{моль}^{-1} [\text{JANAF}]}$$

Регрессионная матрица

$$Y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}; \quad X = \begin{bmatrix} x_{11} & x_{12} & \vdots & x_{1m} \\ x_{21} & x_{22} & \vdots & x_{2m} \\ \vdots & \vdots & \vdots & \vdots \\ x_{n1} & x_{n2} & \vdots & x_{nm} \end{bmatrix}.$$

Y = bX, где $b = (b_1, b_2 \dots b_m)$ – вектор коэффициентов, который нужно вычислить; *Y* – вектор-столбец известных термодинамических свойств базовых компонентов; Х-заданная исходная матрица;

здесь x₁₁ ... x_{nm} – известные свойства всех компонентов матрицы. Регрессионное уравнение для согласования и расчета термодинамических свойств силикатов щелочных металлов (K, Li, Na) по оксидным вкладам будет иметь вид: $y = b_1 x_{SiO_2} + b_2 x_{K_2O} + b_3 x_{Li_2O} + b_4 x_{Na_2O}$.

В соответствии с индексацией стехиометрических коэффициентов в записях общего вида примем следующие обозначения: $x_{SiO_2} = x_{i1}$; $x_{Me_2O} = x_{ij}$ (Me = K, Li, Na).

Для исследуемой системы силикатов щелочных металлов (K, Li, Na) основная регрессионная матрица будет иметь вид, представленный в таблице

Базовый	<i>y</i> _i	Свойства базовых компонентов (<i>x_{nm}</i>)				
компонент		SiO ₂	K ₂ O	Li ₂ O	Na ₂ O	
K ₂ SiO ₃	\mathcal{Y}_1	1	1	0	0	
$K_2Si_2O_5$	y_2	2	1	0	0	
Li ₂ SiO ₃	<i>y</i> ₃	1	0	1	0	
Li ₂ Si ₂ O ₅	y_4	2	0	1	0	
Na ₂ SiO ₃	Y 5	1	0	0	1	
Na ₂ Si ₂ O ₅	<i>y</i> ₆	2	0	0	1	
K ₂ Si ₄ O ₉	У7	4	1	0	0	
Na ₂ Si ₃ O ₇	\mathcal{V}_8	3	0	0	1	
Na ₄ SiO ₄	<i>y</i> 9	1	0	0	2	
$Na_6Si_2O_7$	Y 10	2	0	0	3	

Зависимости для расчета термодинамических потенциалов силикатов щелочных металлов (K, Li, Na)

 $\Delta_{f}H^{\circ}(\text{ TB; 298,15 K}) =$ $= -917,906x_{\text{SiO}}, -653,380x_{\text{K},0} - 722,167x_{\text{Li},0} - 631,047x_{\text{Na},0}$ кДж моль⁻¹; $S^{\circ}(TB; 298, 15 \text{ K}) =$ = 41, 442 x_{SiO} + 105, 257 $x_{\text{K},\text{O}}$ + 40, 173 $x_{\text{Li},\text{O}}$ + 75, 476 $x_{\text{Na},\text{O}}$ Дж · моль⁻¹ · K⁻¹; $C_{p}^{\circ}(\text{TB}; 298, 15 \text{ K}) =$ = 43,657 x_{SiO} + 73,374 $x_{\text{K},0}$ + 57,412 $x_{\text{Li},0}$ + 69,428 $x_{\text{Na},0}$ Дж · моль⁻¹ · K⁻¹; $C_{p}^{\circ}(\mathbf{x}) =$ = 84,000 x_{SiO_2} + 107,000 $x_{\text{K}_2\text{O}}$ + 83,000 $x_{\text{Li}_2\text{O}}$ + 92,000 $x_{\text{Na}_2\text{O}}$ Дж · моль⁻¹ · K⁻¹; $\Delta H^{\circ}(TB \rightarrow K) =$ $= 15,666x_{SiO_2} + 3,336x_{K_2O} + 18,700x_{Li,O} + 8,668x_{Na_2O}$ кДж моль⁻¹.

Температуры плавления силикатов щелочных металлов

<u>Формирование модели расплава Na₂O-SiO₂</u>

База данных для силикатов щелочных металлов была создана на основе вышеописанных методов и встроена в ПК *Селектор-С*. База включает в себя термодинамические характеристики силикатов лития, натрия и калия в диапазоне температур от 298,15 до 6000 К.

Для формирования моделей рассматривалось влияние исходного химического состава (соотношения SiO₂/Na₂O) и температуры на компонентный состав силикатного расплава. Состав расплава менялся от чистого кремнезема до ортосиликата натрия (67 мол. % Na₂O), температурный диапазон задавался от 298 до 1473 К. В системе Na – Si – О список потенциально возможных веществ в равновесии состоял из 25 зависимых компонентов, включая газовую, жидкую и твердую фазы. Кроме того, мы включили дополнительные компоненты NaSiO_{2,5}, Na₃SiO_{3,5}, соответствующие Q³ и Q¹.

Предварительные результаты моделирования расплава при 1300 К

Сопоставление результатов моделирования с экспериментальными данными показывает качественное подобие. Для поправки базы данных вводятся корректировочные коэффициенты, с учетом экспериментальных данных спектроскопии КР.

Точки – Экспериментальные данные **Линии** – Результаты моделирования

Результаты моделирования расплава после коррекции

Распределение структурных единиц после введения корректирующих коэффициентов значительно отличается от первичных результатов. Модельное распределение Qⁿ - единиц и результаты спектроскопии КР подобны и основные характеристики поведения расплавов сохраняются. Модель может быть оценена как удовлетворительная.

Точки – Экспериментальные данные **Линии** – Результаты моделирования

Сопоставление распределения структурных единиц в зависимости от температуры для системы x% Na₂O · (1–x)% SiO₂, при x = 33, 50, 60, 67, соответственно, с результатами спектроскопии КР для расплавов и стекол [Koroleva, 2009] и ЯМР [Maekawa et al., 1991] для стекол

При увеличении температуры И переходе стекло-расплав наблюдается разупорядочение структуры для состава 33 мол % (а), что соответствует СДВИГУ соответствующего равновесия сторону образования вправо В структурных единиц Q² и Q⁴. Для состава 50 мол. % (b) результаты моделирования находятся В пределах погрешности метода. экспериментального Для состава 60 МОЛ. % (c)экспериментальные данные представлены в узком интервале температур, тем не менее, можно говорить 0 качественном соответствии модели. Для состава 67 % Na₂O (d)МОЛ. экспериментальные данные ограничиваются одной точкой при температуре 1143 К, однако в целом результаты термодинамического моделирования И эксперимента качественно совпадают.

Точки – Экспериментальные данные Линии – Результаты моделирования

В результате введения поправок происходит корректировка исходной базы термодинамических данных силикатов щелочных металлов. Кроме того, были получены термодинамические характеристики структурных единиц Qⁿ.

Рассчитанные значения свободной энергии образования структурных единиц Qⁿ в зависимости от температуры.

Т, К	$\Delta_{f}\mathbf{G}^{\circ}, \mathcal{Д}ж$							
800	Q^0	Q1	Q ²	Q ³	Q ⁴			
	-1978964	-1688645	-1388190	-1079737	-758771			
900	-1935496	-1655185	-1361856	-1058630	-741808			
1000	-1892406	-1622090	-1335835	-1037751	-724950			
1100	-1849739	-1589345	-1310135	-1017094	-708170			
1200	-1807534	-1556934	-1284763	-996653	-691461			
1300	-1765824	-1524843	-1259725	-976423	-674821			
1400	-1724636	-1493061	-1235023	-956398	-658243			
1500	-1683993	-1461576	-1210663	-936575	-641722			

Константы равновесия реакций между структурными единицами расплава от температуры для системы x% Na₂O · (1–x)% SiO₂, при x = 33, 50, 60 соответственно (расчет из базы данных FACT, базы данных в ПК Селектор, данные высокотемпературного эксперимента)

Выводы

- В итоге, были сформированы согласованная и откорректированная база данных силикатов натрия и термодинамическая модель натриевосиликатного расплава, работающая в области составов от 0 до 67 мол. % Na₂O.
- Показано, что результаты моделирования процесса распределения структурных единиц расплава от его химического состава находятся в хорошем соответствии с результатами высокотемпературной спектроскопии КР. Для низкощелочных составов термодинамическая модель описывает влияние температуры на структуру расплава в пределах погрешности измерений. Для высокощелочных расплавов достигнуто качественное соответствие расчетных и экспериментально данных.

Работа выполнена при поддержке гранта РФФИ 12-05-00294-а, гранта Президента Российской Федерации для поддержки молодых российских ученых (МК-109.2011.5) и гранта молодых ученых УрО РАН. 22

Спасибо за внимание!