РЕНТГЕНОСПЕКТРАЛЬНОЕ ОПРЕДЕЛЕНИЕ ВАЛЕНТНОГО СОСТОЯНИЯ МАРГАНЦА В ЖЕЛЕЗОМАРГАНЦЕВЫХ КОНКРЕЦИЯХ

Чубаров В.М.

Институт геохимии им. А.П.Виноградова СО РАН, г. Иркутск, e-mail: master-17@rambler.ru

Исследования валентного состояния марганца в железомарганцевых конкрециях (ЖМК) важны с точки зрения минералогии и способности поглощения конкрециями следовых элементов. Влияние химической связи на интенсивность линий рентгеновского спектра марганца проявляется для линий L-серии [Albee, Chodos, 1970], а также для сравнительно слабых сателлитов КВ-линии [Sakurai, Eba, 2003], обусловленных переходами электронов из состояния в валентной М-оболочке на внутренние оболочки атома. Метод рентгеновского микроанализа (РМА) использовался для определения валентного состояния марганца по отношению интенсивностей линий MnL $\alpha_{1,2}$ и MnL β [Albee, Chodos, 1970], а также с использованием эффекта поглощения линии MnLα MnL_ш-краем поглощения [Куликова и др., 1998]. Рентгенофлуоресцентный анализ (РФА) широко используют для определения содержания породообразующих элементов в горных породах, он обеспечивает высокую производительность и сравнительно низкие затраты на пробоподготовку. Для определения валентного состояния элементов методом РФА может быть использована Ксерия рентгеновского флуоресцентного спектра [Филиппов и др., 2001]. Было показано [Чубаров и др., 2009; Чубаров, Финкельштейн, 2010], что для определения валентного состояния железа методом РФА в образцах изверженных горных пород и железных руд целесообразно использовать отношение интенсивностей линий К-серии (КВ_{2.5} и ІКВ_{1.3}) при измерении в пике линии в первом порядке отражения; использование отношения линий Lсерии (L β_1 и L $\alpha_{1,2}$) в качестве аналитического сигнала также возможно.

В данной работе проведена оценка погрешности определения валентного состояния марганца по К- и L-серии рентгеновского спектра в железомарганцевых конкрециях. Исследования выполнены на кристалл-дифракционном рентгенофлуоресцентном спектрометре S4 Pioneer (Bruker AXS). Условия измерения аналитических линий марганца приведены в таблице 1. Кристалл-монохроматор LiF (220) и сцинтлилляционный детектор (SD) использовались для измерения интенсивностей линий в первом порядке отражения, кристалл LiF (200) и проточный пропорциональный детектор – для измерений во втором порядке отражения.

Таблица 1.

Линия /	Энергия (кэВ) /	Монохроматор /	Детектор	Напряжение (кВ) / сила
переход	Длина волны (нм)	Коллиматор		тока (мА) рентгеновской
				трубки
$MnK\beta_5/K-M_4$,	6.535/0.189	L = (220)		
M ₅		LIF (220) , LEF (200)	SD	50 / 60
$MnK\beta_{1,3}/K-$	6.490/0.193	$LIF(200) / 0.22^{\circ}$	FCD	307 00
M_2, M_3		0.23		
$MnL\alpha_{1,2}/L_{3}-$	0.637/1.945			
M4, M5		OVO55 / 0.23°	FCD	30 / 70
$MnL\beta_1/M_2-L_4$	0.649/1.908			

Условия измерения интенсивностей характеристических линий марганца.

На рис. 1 представлен спектр стандартного образца (СО) железомарганцевой конкреции СДО-7 в области линии MnKβ_{1,3}.

Рис. 1. Спектр СО СДО-7 в области линии MnК β_{1,3}

В представленной области спектра присутствует ряд линий, интенсивность которых зависит от валентного состояния марганца: линия $MnK\beta_5$ и ряд сателлитов, наиболее интенсивным из которых является $MnK\beta'$, обусловленный переходом K-M_{2,4} с выбросом электрона с уровня $M_{4,5}$. Для демонстрации зависимости интенсивностей линий Kβ-спектра марганца от валентного состояния были построены разностные спектры, полученные путём вычитания из спектров соединений, содержащих марганец в различных зарядовых состояниях (MnO, Mn_2O_3 , MnO_2 , MnS) спектра образца MnO. Для достижения лучшего разрешения линий спектры были записаны во втором порядке отражения (рис 2).

Рис. 2. Разностные спектры образцов соединений марганца в области линии MnK $\beta_{1,3}$

На рис. 2 проявляется тонкая структура рентгеновских спектров: сателлиты MnKβ' и MnKβ'' разрешаются. В области линии MnKβ₅ интенсивности закономерно увеличиваются с ростом зарядового состояния марганца. В области сателлитов такая зависимость проявляется только для оксидных соединений марганца. Таким образом, использование линии MnKβ₅ в качестве аналитической предпочтительнее, чем использование сателлитов.

На рис. 3 представлена зависимость отношения интенсивностей выбранных аналитических линий от валентного состояния марганца (N) для 4 образов соединений марганца, которая была аппроксимирована уравнением линейной регрессии:

$$R^{1} = a_{0} + a_{1} N,$$
 (1)

где a_0 и a_1 – коэффициенты регрессии, R^1 – отношение интенсивностей линий К-серии (МпК β_5 и МпК $\beta_{1,3}$).

В качестве аналитического параметра рассматривали также отношение интенсивностей линий L-серии (MnL β_1 и MnL $\alpha_{1,2}$). Уравнение (1) для линий K-серии характеризовалось величиной относительного стандартного отклонения V=1%, для линий L-серии – 5%. Предпочтение в качестве аналитического параметра было отдано отношению интенсивностей линий MnK β_5 и MnK $\beta_{1,3}$, которое обеспечивает меньшую величину V. По причине спектрального наложения линий FeK $\alpha_{1,2}$ и MnK $\beta_{1,3}$ использовали второй порядок отражения на кристалле LiF (200).

Рис 3. Зависимость отношений интенсивностей линий $MnK\beta_5$ и $MnK\beta_{1,3}(R^1)$ от валентного состояния марганца (N).

Для построения градуировочной функции использовали СО ЖМК (СДО-4, СДО-5, СДО-6, СДО-7) и марганцевой руды (44-а), в которых содержание MnO_2 варьировало в диапазоне 24.3-56.8%, содержание $MnO^{oбщ}$ – в диапазоне 20.0-67.9%. Зависимость отношения содержаний $R^c = C_{MnO_2} / C_{MnO^{tot}}$ от отношения интенсивностей линий $MnK\beta_5$ и $MnK\beta_{1,3}$ (R^1) во втором порядке отражения для 3 образцов оксидов марганца и 5 СО представлена на рис. 4.

Рис. 4. Зависимость отношения $R^c = C_{MnO_2} / C_{MnO^{tot}}$ от отношения интенсивностей линий $MnK\beta_5$ и $MnK\beta_{1,3}$ (R^I) во втором порядке отражения

Отклонение для СО от зависимости, полученной для образцов оксидов марганца увеличивается с ростом содержания железа в СО. Полученную зависимость для 8 образцов аппроксимировали уравнением линейной регрессии, в которое был включен член $C_{Fe,O_{i}^{tot}}$:

$$\mathbf{R}^{c} = a_{0} + a_{1} * \mathbf{R}^{\mathrm{I}} + a_{2} * C_{Fe,O_{3}^{tot}}$$
⁽²⁾

Для расчета содержания MnO₂ использовали формулу:

$$C_{MnO_2} = C_{MnO^{tot}} \times \mathbb{R}^c.$$
(3)

В таблице 2 приведены результаты определения содержания Mn⁴⁺ в CO железомарганцевых конкреций (ЖМК-1, ЖМК-2, GeoPT-23a), кобальтомарганцевых корок (КМК-1, КМК-2) и марганцевой руды (MnH) с использованием уравнения (2) и формулы (3).

Таблица 2.

СО	$C_{Mn^{o_{out}}}^{amm} \pm \Delta_0, \%$	$C^{P \Phi A}_{Mn^{4+}} \pm \Delta, \%$
ЖМК-1	30.6±0.6	30.3±0.10
ЖМК-2	32.5±0.6	32.0±0.06
КМК-1	25.0±0.4	24.3±0.06
КМК-2	15.7±0.2	15.6±0.06
MnH	(35.5)	10.4±0.06
GeoPT-23A	(34.2)	29.9±0.10

Результаты рентгенофлуоресцентного определения содержания Mn⁴⁺ в CO

Марганец в конкрециях содержится преимущественно в форме Mn⁴⁺, олнако Mn^{2+} . марганцевые руды могут содержать значительные количества Рентгенофлуоресцентный метод обладает преимуществом в экспрессности и низкими затратами на пробоподготовку и может быть использован для оценки валентного состояния железомарганцевых конкрециях, марганца поскольку использование В методов потенциометрического и титриметрического анализа для этой цели затруднено.

Литература

Куликова И.М., Баринский Р.Л., Пеков И.В. Метод микрообъемных исследований формы вхождения атомов марганца в кристаллическую структуру минералов // Записки ВМО. 1998. Ч. СХХVII. №3. С. 110-115.

Филиппов М.Н., Куприянова Т.А., Лямина О.И. Одновременное определение содержания и формы нахождения элемента в твердом теле рентгенофлуоресцентным методом // Журнал аналитической химии. 2001. Т.56. №8. С.817-824.

Чубаров В.М., Финкельштейн А.Л. Рентгенофлуоресцентное определение отношения FeO/Fe₂O₃^{tot} в горных породах // Журнал аналитической химии. 2010. Т. 65. № 6. С. 634-641.

Чубаров В.М., Финкельштейн А.Л., Амиржанов А.А. Определение отношения FeO/Fe₂O₃^{tot} в железных рудах по эмиссионным линиям К-серии рентгеновского флуоресцентного спектра // Аналитика и контроль. 2009. Т.13. № 3. С. 141-146.

Albee A.L., Chodos A.A. Semiquantitative electron microprobe determination of Fe^{2+}/Fe^{3+} and Mn^{2+}/Mn^{3+} in oxides and silicates and its application to petrologic problems // Amer. Miner. 1970. V. 55. N3/4. P.103-107.

Sakurai K., Eba H. Chemical characterization using relative intensity of manganese K β ' and K β_5 X-ray fluorescence // Nuclear Instrument and Methods in Physical Research B. 2003. V. 199. P. 391-395.